Brønsted-Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces
نویسنده
چکیده
In this work we are concerned with maximality of monotone operators representable by certain convex functions in non-reflexive Banach spaces. We also prove that these maximal monotone operators satisfy a Brønsted-Rockafellar type property. 2000 Mathematics Subject Classification: 47H05, 49J52, 47N10.
منابع مشابه
On the surjectivity properties of perturbations of maximal monotone operators in non-reflexive Banach spaces
We are concerned with surjectivity of perturbations of maximal monotone operators in non-reflexive Banach spaces. While in a reflexive setting, a classical surjectivity result due to Rockafellar gives a necessary and sufficient condition to maximal monotonicity, in a nonreflexive space we characterize maximality using a “enlarged” version of the duality mapping, introduced previously by Gossez....
متن کاملConstruction of pathological maximally monotone operators on non-reflexive Banach spaces
In this paper, we construct maximally monotone operators that are not of Gossez’s dense-type (D) in many nonreflexive spaces. Many of these operators also fail to possess the Brønsted-Rockafellar (BR) property. Using these operators, we show that the partial inf-convolution of two BC–functions will not always be a BC–function. This provides a negative answer to a challenging question posed by S...
متن کاملSomme Ponctuelle D’opérateurs Maximaux Monotones
The primary goal of this paper is to shed some light on the maximality of the pointwise sum of two maximal monotone operators. The interesting purpose is to extend some recent results of Attouch, Moudafi and Riahi on the graphconvergence of maximal monotone operators to the more general setting of reflexive Banach spaces. In addition, we present some conditions which imply the uniform Brézis-Cr...
متن کاملVariational Principles for Monotone and Maximal Bifunctions
We establish variational principles for monotone and maximal bifunctions of Brøndsted-Rockafellar type by using our characterization of bifunction’s maximality in reflexive Banach spaces. As applications, we give an existence result of saddle point for convex-concave function and solve an approximate inclusion governed by a maximal monotone operator.
متن کاملMaximal monotonicity, conjugation and the duality product in non-reflexive Banach spaces
Maximal monotone operators on a Banach space into its dual can be represented by convex functions bounded below by the duality product. It is natural to ask under which conditions a convex function represents a maximal monotone operator. A satisfactory answer, in the context of reflexive Banach spaces, has been obtained some years ago. Recently, a partial result on non-reflexive Banach spaces w...
متن کامل